Quantum Materials Studies at the *In-Situ* and Resonant Scattering Beamline, 4-ID

Christie Nelson, Lead Beamline Scientist for 4-ID (ISR)

July 25, 2017

Scientific Programs and Beamline Specs

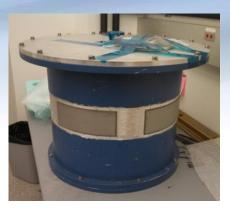
– Science focus areas:

- Physics of quantum materials
- Atomic structure of functional surfaces and interfaces
- Time-resolved studies of growth and materials processes

– Key capabilities:

- Tender and hard x-rays (2.4-23 keV)
- Variable focusing down to ~20 μm (H) x 2 μm (V)
- Polarization control
- Custom endstations, including gas handling system infrastructure

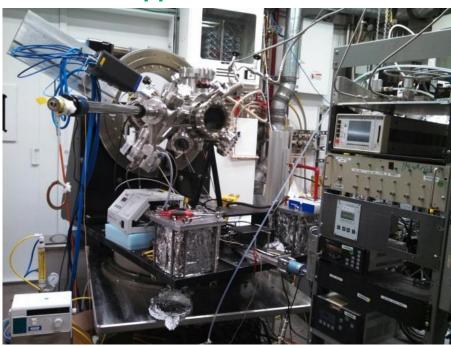
Parameter	Specification/Description
Insertion device:	IVU23, 2.8-m long, in a high- β straight
Operating energy range:	2.4 – 23 keV
Monochromator:	Fixed-exit Si(111)
Beam size at sample (FWHM):	Tunable down to 20 (H) x 2 (V) μm²
Flux at sample (500 mA ring current):	~10 ¹³ photons/s
Harmonic suppression:	~10 ⁻⁵ for third harmonic with fundamental at 3 keV
Polarization control:	$P_{L,C} \ge 0.9$ for 2.4 keV $\le E \le 14$ keV
Custom endstations:	3 endstations: base diffractometer for high magnetic field studies, instrumented 6-circle diffractometer, and base diffractometer for <i>in-situ</i> studies of growth and materials processes with gas handling system infrastructure


Endstation Hutch 4-ID-C


Instrumented 6-Circle Diffractometer

- Horizontal and vertical plane scattering with large accessible Q range
- Dual 2θ arms for simultaneous mounting of point and area detectors
- In-vacuum polarization analyzer
- Motorized cryostat carrier

High-Field Magnet **Endstation (to be** commissioned in **FY19)**


- Horizontal plane scattering
- Polarization analyzer
- Scattering magnet specifications:
 - Vertical field: up to ~10 T
 - Sample temperature: 1.8-300 K

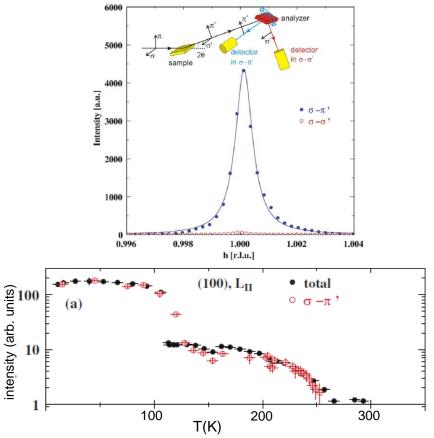
Endstation Hutch 4-ID-D

In-Situ Diffractometer and Partner User-Supplied Growth Chamber

- Secondary focusing using KB mirrors
- Gas handling system
- Excimer laser
- Pixel array detector:
 - Millisecond time resolution
 - High Q resolution

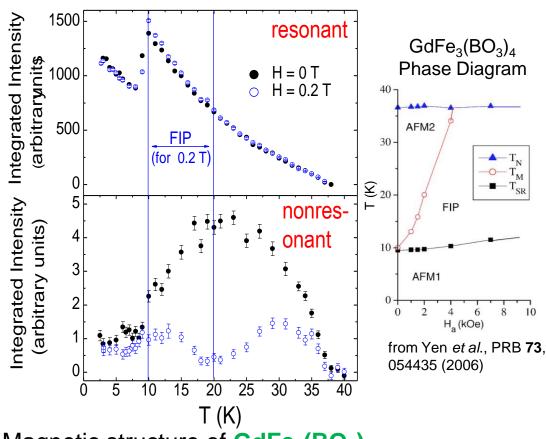
Program contact: Kenneth Evans-Lutterodt

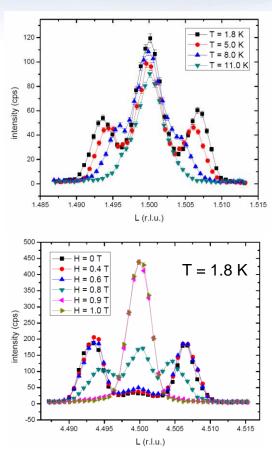
Gas Cabinets



Excimer Laser

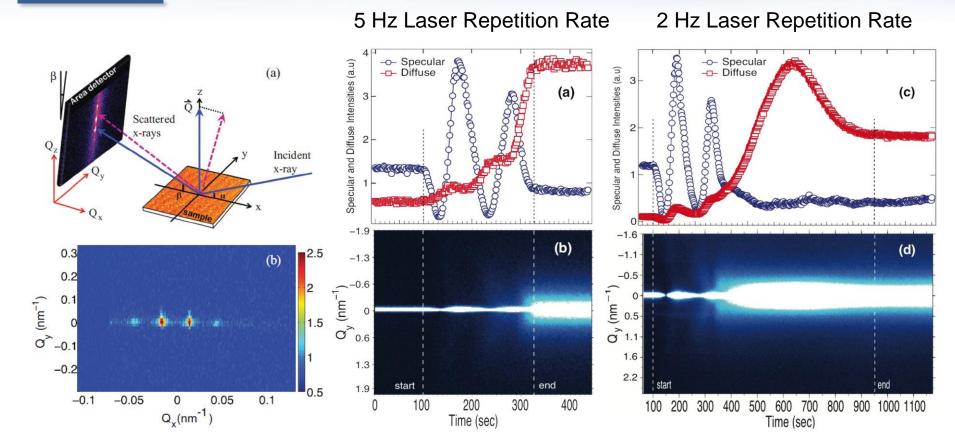
Resonant X-ray Scattering from 4d- and 5dbased Oxides


Orbital ordering transition observed in Ca₂RuO₄. Zegkinoglou *et al.*, PRL **95**, 136401 (2005).


Characterization of doping-induced change in the magnetic order of $Sr_2Ir_{1-x}Rh_xO_4$. Clancy *et al.*, PRB **89**, 054409 (2014).

Magnetic Order in Multiferroic Rare Earth

Ferroborates



Magnetic structure of **GdFe₃(BO₃)₄** solved using magnetic x-ray scattering. Mo *et al.*, PRB **78**, 214407 (2008).

Temperature- and magnetic field-tuning of magnetic phases in NdFe₃(BO₃)₄. Nelson *et al.*, JKPS **62**, 1410 (2013).

In-Situ Studies of BiFeO₃ Thin Film Growth

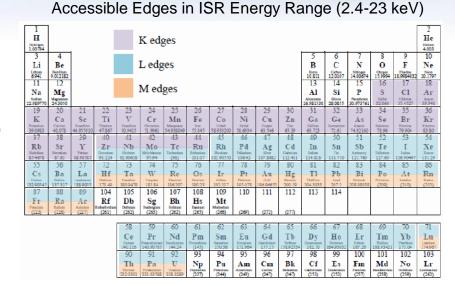
Laminar-to-3D growth mode transition at ~2.5 unit cells in pulsed laser deposited BiFeO₃. Chinta *et al.*, APL **101**, 201602 (2012).

Current and Near-Future Beamline

Capabilities

- Single-crystal resonant x-ray scattering with hard (6-23 keV) x-rays,
 ~100 μm beam
- *In-situ* studies of materials growth at surfaces and interfaces with hard x-rays (8-23 keV), with optional use of gas flow control and handling capabilities for non-hazardous gases, ~100 µm beam

• Secondary focusing down to ~20 μm (H) x 2 μm (V) with *in-situ* endstation


(available in early 2018)

Polarization control with hard (6-14 keV) x-rays (available in early 2018)

 Tender (2.4-6 keV) x-ray scattering with harmonic rejection and polarization control (available in late 2018)

Growth processes using hazardous gases (available in 2019)

Scattering in high magnetic field (available in 2019)

Planned Additional Capabilities

- Sub-100 μm horizontal focusing for 6-circle diffractometer
- Coherent scattering:
 - Dynamics of charge, orbital, and magnetic domains
 - Domain imaging
- XMCD (requires horizontal magnetic field)
- Diamond anvil cell in high-field magnet

